Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37630446

ABSTRACT

Understanding of the primary production of phytoplankton in the Kara Sea (KS), the Laptev Sea (LS), and the East Siberian Sea (ESS) remains limited, despite the recognized importance of phytoplankton in the Arctic Ocean. To address this knowledge gap, we conducted three NABOS (Nansen and Amundsen Basins Observational System) expeditions in 2013, 2015, and 2018 to measure in situ primary production rates using a 13C-15N dual-tracer method and examine their major controlling factors. The main goals in this study were to investigate regional heterogeneity in primary production and derive its contemporary ranges in the KS, LS, and ESS. The daily primary production rates in this study (99 ± 62, 100 ± 77, and 56 ± 35 mg C m-2 d-1 in the KS, LS, and ESS, respectively) are rather different from the values previously reported in each sea mainly because of spatial and regional differences. Among the three seas, a significantly lower primary production rate was observed in the ESS in comparison to those in the KS and LS. This is likely mainly because of regional differences in freshwater content based on the noticeable relationship (Spearman, rs = -0.714, p < 0.05) between the freshwater content and the primary production rates observed in this study. The contemporary ranges of the annual primary production based on this and previous studies are 0.96-2.64, 0.72-50.52, and 1.68-16.68 g C m-2 in the KS, LS, and ESS, respectively. Further intensive field measurements are warranted to enhance our understanding of marine microorganisms and their community-level responses to the currently changing environmental conditions in these poorly studied regions of the Arctic Ocean.

2.
Sci Total Environ ; 891: 164666, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37286011

ABSTRACT

The compositions of organic carbon could be important in determining biological carbon pump efficiency. However, little information on them in relation to each algal assemblage is currently available in the Ross Sea. Here, we investigated the seasonal variations in organic carbon composition and the relative abundance of each organic carbon, including particulate organic carbon (POC), dissolved organic carbon (DOC), and transparent exopolymer particles (TEPs), characterized by different algal groups in the Ross Sea. The average POC and DOC contributions to the total organic carbon (TOC = POC + DOC) were 13.8 ± 3.7 % and 86.2 ± 3.7 % in mid-January 2019 and 20.9 ± 4.1 % and 79.1 ± 4.1 % in February-March 2018, respectively. The carbon content of TEP (TEP-C) contributed 19.6 ± 11.7 % and 4.6 ± 7.0 % of POC and TOC in mid-January and 36.2 ± 14.8 % and 9.0 ± 6.7 % in February-March, respectively. We found that the organic carbon compositions were affected by seasonal variations in the phytoplankton bloom phase, physical characteristics, and phytoplankton community structure. DOC concentrations and contributions to the TOC increased as phytoplankton cells became senescent in mid-January and decreased in February-March when phytoplankton were relatively active. From February-March, the deepened mixed layer depth encouraged TEP formation, subsequently increasing the TEP contributions. Regardless of the sampling season, all organic carbon concentrations per unit Chl-a were significantly higher in P. antarctica-abundant groups. The DOC contributions to the TOC were correspondingly higher at the P. antarctica-abundant stations in mid-January, which indicates that P. antarctica could be also important in the DOC contributions in the Ross Sea. The rapid alteration in environmental characteristics and phytoplankton community structures in the Ross Sea due to climate change could affect the organic carbon pool at the euphotic layer which consequently could determine the efficiency of the biological pump.


Subject(s)
Carbon , Environmental Monitoring , Phytoplankton , Dissolved Organic Matter , Spatio-Temporal Analysis
3.
Front Microbiol ; 12: 618999, 2021.
Article in English | MEDLINE | ID: mdl-33643247

ABSTRACT

Organic carbon fixed by photosynthesis of phytoplankton during the polar growing period could be important for their survival and consumers during the long polar night. Differences in biochemical traits of phytoplankton between ice-free and polar night periods were investigated in biweekly water samples obtained at the Korean "Jang Bogo Station" located in Terra Nova Bay, Antarctica. The average concentration of total Chl-a from phytoplankton dominated by micro-sized species from the entire sampling period was 0.32 µg L-1 (SD = ± 0.88 µg L-1), with the highest concentration of 4.29 µg L-1 in February and the lowest concentration of 0.01 µg L-1 during the ice-covered polar night (April-October) in 2015. The highest protein concentration coincided with the peak Chl-a concentration in February and decreased rapidly relative to the carbohydrate and lipid concentrations in the early part of polar night. Among the different biochemical components, carbohydrates were the predominant constituent, accounting for 69% (SD = ± 14%) of the total particulate organic matter (POM) during the entire study period. The carbohydrate contributions to the total POM markedly increased from 39 ± 8% during the ice-free period to 73 ± 9% during the polar night period. In comparison, while we found a significant negative correlation (r 2 = 0.92, p < 0.01) between protein contributions and carbohydrate contributions, lipid contributions did not show any particular trend with relatively small temporal variations during the entire observation period. The substantial decrease in the average weight ratio of proteins to carbohydrates from the ice-free period (mean ± SD = 1.0 ± 0.3) to the ice-covered period (mean ± SD = 0.1 ± 0.1) indicates a preferential loss of nitrogen-based proteins compared to carbohydrates during the polar night period. Overall, the average food material (FM) concentration and calorific contents of FM in this study were within the range reported previously from the Southern Ocean. The results from this study may serve as important background data for long-term monitoring of the regional and interannual variations in the physiological state and biochemical compositions of phytoplankton resulting from future climate change in Antarctica.

4.
Front Microbiol ; 12: 623600, 2021.
Article in English | MEDLINE | ID: mdl-33552041

ABSTRACT

Marine particulate organic matter (POM) largely derived from phytoplankton is a primary food source for upper trophic consumers. Their biochemical compositions are important for heterotrophs. Especially, essential amino acids (EAAs) in phytoplankton are well known to have impacts on the survival and egg productions of herbivorous zooplankton. To estimate the nutritional quality of POM, the biochemical compositions [biomolecular and amino acid (AA) compositions] of POM were investigated in the northwestern Ross Sea during the late austral summer in 2018. Carbohydrates (CHO) accounted for the highest portion among different biomolecules [CHO, proteins (PRT), and lipids (LIP)] of POM. However, the higher contribution of PRT and lower contribution of CHO were observed in the southern section of our study area compared to those in the northern section. The spatial distribution of total hydrolyzable AAs in POM was considerably influenced by phytoplankton biomass, which indicates that the main source of particulate AA was generated by phytoplankton. Our results showed that the relative contribution of EAA to the total AAs was strongly associated with EAA index (EAAI) for determining protein quality. This result indicates that higher EAA contribution in POM suggests a better protein quality in consistency with high EAAI values. In this study, variations in the biochemical compositions in POM were principally determined by two different bloom-forming taxa (diatoms and Phaeocystis antarctica). The southern region dominated majorly by diatoms was positively correlated with PRT, EAA, and EAAI indicating a good protein quality, while P. antarctica-abundant northern region with higher CHO contribution was negatively correlated with good protein quality factors. Climate-driven environmental changes could alter not only the phytoplankton community but also the physiological conditions of phytoplankton. Our findings could provide a better understanding for future climate-induced changes in the biochemical compositions of phytoplankton and consequently their potential impacts on higher trophic levels.

5.
Mar Environ Res ; 155: 104873, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31965975

ABSTRACT

Here, we investigated the elemental (C/N ratio) and isotopic signatures (δ13C) and major biomolecules (carbohydrates, proteins, and lipids) and their relative abundance (i.e., the biochemical composition) in particulate organic matter (POM) to assess their origin and fate in the Laptev and western East Siberian seas during late summer/fall of 2015. In addition, we compared our results with the summer data of 2013 collected from Laptev and northwestern East Siberian seas. In accordance with the observed hydrological structure (i.e., a northward, warmer, diluted freshwater plume than previously observed in 2013), the more depleted δ13C (-28.2 ± 0.9‰) and higher C/N ratio (10.8 ± 2.0) than those of 2013 signalled that fluvially released terrestrial organic carbon (TerrOC) was the main source of the POM, unlike in 2013, when phytoplankton was the dominant source (δ13C = -24.9 ± 1.0‰, C/N ratio = 7.6 ± 2.4; Ahn et al., 2019). During the offshore transport of heterogeneous TerrOC, carbohydrates seem to be the primary contributor to the bulk POM as a result of selective degradation and hydrodynamic sorting. Despite the TerrOC-dominated system in 2015, some marine influence was also found. The estimated phytoplankton biomass was low and comparable among the study sites. In addition, the presence of resting spores and high ammonium concentrations within the water column may suggest senescent and, to some extent, degrading conditions of the resident phytoplankton. In this regard, carbohydrate concentrations and freshwater content were significantly correlated (r = 0.79, p < 0.01), suggesting that carbohydrates are useful inferences of freshwater within overall study sites, at least when the marine influence is similar or low.


Subject(s)
Particulate Matter/chemistry , Phytoplankton , Seawater/chemistry , Arctic Regions , Carbon Isotopes , Nitrogen Isotopes , Pacific Ocean , Siberia
SELECTION OF CITATIONS
SEARCH DETAIL
...